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Historical and future learning about climate sensitivity

Nathan M. Urban1,2, Philip B. Holden3, Neil R. Edwards3, Ryan L. Sriver4, and

Klaus Keller5,6

Equilibrium climate sensitivity measures the long-term
response of surface temperature to changes in atmospheric
CO2. The range of climate sensitivities in the IPCC AR5
Report is unchanged from that published almost 30 years
earlier in the Charney Report. We conduct perfect-model
experiments using an energy balance model to study the
rate at which uncertainties might be reduced by observa-
tion of global temperature and ocean heat uptake. We find
that a climate sensitivity of 1.5 ◦C can be statistically dis-
tinguished from 3 ◦C by 2030; 3 ◦C from 4.5 ◦C by 2040;
and 4.5 ◦C from 6 ◦C by 2065. Learning rates are slowest
in the scenarios of greatest concern (high sensitivities), due
to a longer ocean response time, which may have bearing on
wait-and-see vs. precautionary mitigation policies. Learning
rates are optimistic in presuming the availability of whole-
ocean heat data, but pessimistic by using simple aggregated
metrics and model physics.

1. Introduction

A key climate uncertainty is the expected warming of the
climate system with respect to a given change in atmospheric
CO2. This is often quantified by the long-term response of
global surface temperature to an assumed doubling of CO2

concentration, which is known as the (equilibrium) climate
sensitivity [Knutti and Hegerl , 2008]. The climate sensitiv-
ity is uncertain not primarily because of scientific ignorance
of the greenhouse effect, but because the climate system con-
tains many complex dynamical feedbacks which modify the
greenhouse warming. Greenhouse-induced changes in atmo-
spheric water vapor content, cloud cover, snow and ice area,
etc. themselves can cause warming or cooling effects which
are absorbed into the definition of climate sensitivity.

Together, uncertainty about the strengths (or even signs)
of these feedbacks lead to substantial uncertainty in the
overall climate sensitivity, which was judged by the 2013
IPCC Fifth Assessment Report (AR4) to likely lie in the
range of 1.5–4.5 ◦C per doubling of CO2 [IPCC , 2013].
This is identical to the range reported in the influential 1979
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Charney Report [Charney , 1979]. While the scientific un-
derstanding of the climate system has improved over time,
this does not necessarily lead to reduced uncertainty about
specific system properties such as climate sensitivity, as new
complexities are discovered e.g. in the radiative forcing of
aerosols. In addition, learning about the climate by temper-
ature observations may be slow as the greenhouse effect has
only gradually strengthened, and the oceans respond slowly
to surface temperature perturbations.

This raises the question of when substantial reductions
in uncertainty about climate sensitivity may be expected,
i.e., the learning rate. The question is of potential policy
interest: if learning rates are expected to be fast, then one
can adopt a ‘wait-and-see’ approach, deferring strong emis-
sions mitigation until more is learned. On the other hand,
if learning rates are expected to be slow, then a ‘precau-
tionary’ approach may be more advisable, with more rapid
policy action taken to insure against the risk of a high cli-
mate sensitivity that cannot be quickly ruled out.

Quantitative studies of climate sensitivity learning have
existed for some time, often reporting long learning times,
though the definition of ‘learning’ as well as the methods
used vary across studies. Rather than attempting to rec-
oncile these different studies with each other and with our
results, we simply summarize each approach and findings,
highlighting where definitions and methods differ.

One early study, Khesghi and White [1993], fit an
upwelling-diffusive energy-balance model (EBM) with au-
toregressive and white noise to the historical surface tem-
perature record using least-squares minimization. It finds
fairly tight uncertainty bounds (∼ 1◦ C 90% interval width)
using only temperature data only up to 1980 and a 1.5-
year autocorrelation time of natural variability (defined as
the e-folding time of an exponential correlation function);
however, if 100-year temperature variability is assumed, this
level of certainty cannot be obtained until at least 2080 un-
der the assumptions of the study.

Some subsequent work on climate learning arose from
the economic integrated assessment modeling and policy
community, using simpler energy balance models. A sem-
inal study in endogenous Bayesian learning, Kelly and Kol-
stad [1999], estimated climate sensitivity sequentially using
a Kalman-filter type approach, assuming normality in the
climate feedback factor. It used an EBM with a single at-
mospheric layer and ocean layer — simpler than a diffusive
ocean model — with simulated observations of both atmo-
sphere and deep ocean temperature, including autoregres-
sive temperature variability. Over many hypothetical real-
izations of future temperature, it found a learning time of
90–160 years, but used a rather strict requirement for ‘learn-
ing’ (a precision of 0.1◦ at 90% confidence). A more recent
economic study, Leach [2007], considered joint learning of
climate sensitivity and the autocorrelation of temperature
variability using an EBM with atmospheric and ocean lay-
ers, similar to Kelly and Kolstad [1999]. It reports learning
times, also with a precision of 0.1◦, of hundreds to thousands
of years depending on the emissions scenario.

More recent work in the climate science community has
returned to the climate sensitivity learning problem. Padilla

1



X - 2 URBAN ET AL.: LEARNING ABOUT CLIMATE SENSITIVITY

et al. [2011] estimated the joint uncertainty in the transient
climate sensitivity and aerosol forcing over the historical and
near-future period using a two-layer EBM and a nonlinear
Kalman filter, considering only a single assumed sensitiv-
ity in its future learning projections. It constrains these
parameters using global surface temperature alone and ne-
glects ocean heat uptake, absorbing uptake uncertainty into
the definition of the transient feedback, arguing that this is
less relevant to the estimation of the transient (as opposed
to equilibrium) climate sensitivity. It finds that the lower
bound on transient sensitivity remains relatively unchanged
over time, but substantial reductions in the upper bound
occur by 1950, and further rapid reductions occur after the
year 2000 as recent temperature data exclude higher sensi-
tivities. The implications for the upper bound of equilibrium
sensitivity are not studied in this work.

Ring and Schlesinger [2007] produced an estimate of joint
climate parameter learning (climate sensitivity, ocean diffu-
sivity, and aerosol forcing) using a EBM with upwelling-
diffusive ocean. It considers Bayesian learning from sur-
face temperature and radiative imbalance from ocean heat
uptake, using synthetic historical and future observations
generated from the EBM and a singular spectrum analy-
sis (SSA) of historical climate variability. It finds rapid
learning about climate sensitivity (essentially perfect knowl-
edge by 2050). However, its present-day uncertainty about
climate sensitivity is already unusually narrow — approxi-
mately 0.5 ◦C 90% interval width, compared to the 2.5 ◦C
66% interval width of the IPCC.

Hannart et al. [2013] considers learning in a single-layer
stochastic EBM along the lines of Kelly and Kolstad [1999],
constrained by surface temperature data, and finds the pos-
sibility of ‘disconcerting learning’ where the uncertainty may
(temporarily) increase over time as new observations are in-
cluded. This effect is strongest when the prior distribution
of climate uncertainty is highly skewed or heavy-tailed.

Figure 1. Historical observations and projected sce-
narios under four assumed climate sensitivities (S), for
surface temperature (upper panel) and ocean heat (lower
panel). At early times when observations are not avail-
able, synthetic hindcasts are generated using the same
procedure used to generate the synthetic projections. Au-
toregressive noise is added to the model projections to
simulate natural variability, observation error, and and
model structural error, as described in Sec. 2.1.

In this work, we conduct a climate sensitivity learn-
ing study with the following features: (1) a diffusive-ocean
EBM; (2) joint Bayesian learning about both climate physics
and stochastic climate noise (‘statistical’) parameters, with
the latter determined endogenously from the data-model
residuals; (3) assimilation of real historical temperature and
ocean heat observations up to present, followed by synthetic
observations in the future; (4) correlation of climate param-
eters in the synthetic future scenarios to enforce historical
consistency; (5) dependence of learning rates upon the as-
sumed climate sensitivity; and (6) a new learning criterion.
In particular, we consider learning climate sensitivity to a
tenth of a degree, as required in some earlier studies, to be
too stringent a criterion for many decision-making contexts.
Rather, we consider a relaxed learning criterion, which is
the time to distinguish between a few coarse climate sensi-
tivity scenarios (separated by 1.5 ◦C intervals). Some of the
features of our analysis have been considered individually in
earlier work, but to date no work has combined all of them
comprehensively.

2. Methods

We use temperature and ocean heat observations up to
a given year to calibrate the parameters of an energy bal-
ance climate model (Fig. 1). The Bayesian calibration gives
a probability distribution for climate sensitivity and other
model parameters, conditional on the observations that ex-
ist up to the given year. To estimate the rate of learning, the
calibration procedure is repeated by including additional ob-
servations into the analysis, 5 years at a time. The resulting
sequence of of parameter estimates gives the rate of learn-
ing about the model parameters over time as more data are
included in the inference. The rate of learning for our pur-
poses is defined to be reduction in width of the parameters’
95% credible intervals over time.

2.1. Model and data sources

The underlying energy balance model (EBM), called
DOECLIM, has a zero-dimensional atmosphere coupled to
a one-dimensional diffusive ocean [Kriegler , 2005; Tanaka
et al., 2007]. Its three uncertain parameters are climate sen-
sitivity (S); ocean vertical diffusivity (κ), controlling the
rate of heat ocean uptake and the climate response time;
and the aerosol radiative forcing strength (α), expressed as
a factor multiplying the historical or projected forcing time
series. These three parameters are generally assumed in
climate sensitivity studies to be the most dominant phys-
ical uncertainties in the global temperature response [For-
est et al., 2002; Knutti et al., 2002; Urban and Keller , 2010;
Ring and Schlesinger , 2007]. In addition, the initial temper-
ature (T0) and ocean heat anomalies (H0) at the beginning
of the model integration (the year 1850), and the standard
deviation (σ) and annual autocorrelation (ρ) of the data-
model residuals, are also treated as uncertain parameters to
be estimated. Including both temperature and ocean heat
observations, a total of 9 model and statistical parameters
are jointly estimated: θ = [S, κ, α, T0, H0, ρT , ρH , σT , σH ].

The joint uncertainty in model and statistical parameters
is estimated every 5 years from 1850 to 2010 by assimilating
whatever temperature and ocean heat observations exist up
to a given year. The posterior parameter probability dis-
tribution using data up to year t is denoted [θ|yt], where
θ is the vector of estimated parameters and y is the obser-
vational time series data for temperature and ocean heat.
The surface temperature data are HadCRUT4 global means
(1850–2012) [Morice et al., 2012], and the ocean heat data
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are 0–3000 m ocean heat uptake (1953–1996) [Gouretski and
Koltermann, 2007]. Although longer ocean heat time series
are available [Levitus, 2012], they are for a depth range (0-
2000 m) that is not compatible with the output of the DOE-
CLIM model, which has a 4000 m ocean. In this analysis, we
treat the observed 3000-m and modeled 4000-m heat uptake
as comparable, assuming that little heat is transported to
depths below 3000 m over the time scales considered. The
DOECLIM model is forced with RCP 8.5 historical radia-
tive forcings, with the total (direct+indirect) aerosol forcing
multiplied by an uncertain factor estimated from the data,
as mentioned above.

2.2. Parameter inference

The joint uncertainty in parameters is determined by
Bayesian inference [Urban and Keller , 2010], so that the pos-
terior distribution of the parameters conditional on the data
is proportional to the likelihood function times the prior dis-
tribution, [θ|yt] ∝ [yt|θ][θ]. The Bayesian parameter poste-
rior distribution is sampled by Markov chain Monte Carlo
(MCMC) over 1 million iterations. The likelihood function
[yt|θ] assumes that the temperature and ocean heat obser-
vations are given by a deterministic mean trend simulated
by the climate model, plus a normally-distributed first-order
autoregressive noise process, i.e. AR(1), and the tempera-
ture and ocean heat residual noise processes are uncorrelated
with each other, as in Urban and Keller [2010]. This residual
AR(1) process represents a combination of both observation
error, interannual natural variability, and model error. We
do not attempt to disentangle and attribute these individ-
ual sources of variability, but rather assume that their sum
can be modeled as an autoregressive process that can be
estimated from the data-model misfit.

The temperature observations up to year t are thus given
as Tt = TEBM (t; θ) + εT (θ) + T0(θ) where TEBM is the cli-
mate model prediction and εT is an AR(1) process; and
similarly for the ocean heat observations.

Informative priors are used for the three EBM param-
eters, while uniform priors are used for the remaining six
parameters; assuming prior independence, the joint prior
[θ] is the product of these individual prior distributions.
The prior probability distribution for climate sensitivity
is loosely based on model climatological and Last Glacial
Maximum constraints, and is equal to the product of two
normal inverse Gaussian distributions [Olson et al., 2012],
NIG(α = 1.8, δ = 2.3, β = 1.2, µ = 1.7)×NIG(α = 1.9, δ =
3.3, β = 1.0, µ = 1.3). The prior for vertical diffusivity
is motivated by the range of values found in Goes et al.
[2010]; Bhat et al. [2012], which constrained that parameter
in the UVic intermediate complexity model using biogeo-
chemical ocean tracer data. The observationally-permitted
range of diffusivities found for UVic is converted to a range
of effective diffusivities for the DOECLIM model by fit-
ting DOECLIM to the transient ocean response of UVic; a
Lognormal(1.1, 0.32) distribution approximately spans this
range. The prior for aerosol scaling is triangular over the
range 0 to 3, peaked at 1, to conservatively represent the
ranges summarized in the fourth IPCC report [IPCC , 2007].
These climatological and paleoclimatological constraints on
climate sensitivity, ocean biogeochemical constraints on ver-
tical diffusivity, and optical-depth based estimates of aerosol
forcing are all approximately independent of the historical
surface temperature and ocean heat data sets and can serve
as useful prior knowledge about the EBM parameters.

The priors chosen here are not intended to reflect histor-
ical scientific knowledge about the climate system (i.e., in
the mid-19th century). The ‘learning’ estimated over the pe-
riod spanned by the instrumental record should not be inter-
preted to summarize the evolution of scientific understand-
ing of climate sensitivity. Rather, it is intended to demon-
strate how the accumulation of temperature and ocean heat
data over time can constrain climate parameters, relative

to some independent state of knowledge represented by one
particular informed choice of prior.

2.3. Future learning

To analyze rates of future learning, the MCMC-based se-
quential inference is repeated into the future with synthetic
(model-generated) observational data. Four future scenar-
ios are considered, with low (1.5 ◦C), medium (3 ◦C), high
(4.5 ◦C), and very high (6 ◦C) climate sensitivities (Fig. 1).

The synthetic observations for each scenario are gener-
ated by integrating the energy balance model forward with
RCP 8.5 extended forcings to 2150, and adding simulated
AR(1) noise to the model projections. A high emissions
scenario is chosen to represent the case that society does
not choose to immediately implement strict carbon controls,
which more strongly brings out the importance of learning
to the wait-and-see vs. precautionary policy contrast.

Each of the four scenarios assumes a particular climate
sensitivity. Because the observational constraints imply cor-
relations between climate sensitivity and other parameters,
it is necessary to set the other parameters in each scenario to
values that are consistent with the assumed sensitivity. For
example, a high-sensitivity scenario will generally require a
high rate of ocean heat uptake or a strong aerosol cooling in
order to produced the observed historical warming [Urban
and Keller , 2009, 2010].

To generate consistent parameter sets, the parameters
other than climate sensitivity are fixed at their posterior
means given observations to the year 2012 (the year before
the projections begin), conditional on the assumed climate
sensitivity, Fig. 2. That is, denoting climate sensitivity by
S and the remaining 8 parameters by φ so that θ = (S, φ),
an estimate for φ conditional on S given data up to year
t = 2012 is φ̄2012|S = E[φ|yt, S]. Geometrically the condi-
tional distribution [φ|yt, S] can be thought of as the slice of
the joint posterior distribution [φ|yt] generated by fixing S

Figure 2. Pairwise correlations between the climate sen-
sitivity (S), vertical diffusivity (κ), and aerosol scaling
(α) estimated in 2012. Gray points are samples from
the posterior distribution; crosses indicate the posterior
mean; colored circles indicate the conditional mean val-
ues used in the four future scenarios in Fig. 1.
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to a constant. The conditional mean is approximated nu-
merically by taking a thin slice of the Monte Carlo samples
from the joint posterior, [θ|y2012], that are within ±0.1 ◦C of
the assumed climate sensitivity S, and calculating the aver-
age of φ over this subset. This procedure gives values of the
vertical diffusivity and aerosol forcing, as well as the statis-
tical parameters, that are consistent with both the assumed
climate sensitivity and observational data.

3. Results

Inferred marginal posterior probability distributions for
the three climate parameters given data to 2012 are shown
in Fig. 3. The historical temperature and ocean heat data
constrain the climate sensitivity and ocean diffusivity pa-
rameters only minimally relative to their assumed prior dis-
tributions. The prior and posterior distributions for climate
sensitivity are similar to the 2–4.5 ◦C range given in the
IPCC Fourth Assessment Report [IPCC , 2007], although
it should be noted that Fig. 3 depicts 90/95% ranges while
the IPCC report implicitly uses a 66% range; our 66% range
for 2012 is 2.5–3.9 ◦C. The posterior aerosol forcing scaling
factor does show a substantial decrease in uncertainty after
updating with observational data, indicating that the histor-
ical warming response of the global climate system indirectly
constrains the possible aerosol forcing.

The learning results are summarized in Fig. 4. As implied
by Fig. 3, little learning is observed to the present date (rela-
tive to the assumed priors) for climate sensitivity and ocean
diffusivity. We hypothesize this is due to historical cancella-
tion between the greenhouse and aerosol forcings, although
some learning occurs about the aerosol forcing itself.

Into the future, substantial learning occurs over time
about all three climate parameters, for all four projected
climate sensitivity scenarios. The uncertainty in climate
sensitivity, as measured by the width of the 95% credible
interval, is reduced from 3.1 ◦C in 2012 to 0.4–2.6◦ in 2050,

Figure 3. Posterior distributions of the three estimated
climate parameters given data to 2012. The solid black
curves are the posteriors, the green dashed curves are the
priors, the solid circles are the corresponding means, and
the thick/thin line segments are the 90/95% intervals.

0.1–0.5◦ in 2100, and 0.1–0.2◦ in 2150, depending on the
assumed climate sensitivity. (A precision of 0.1 ◦ may be
unrealistic given the highly simplified assumptions of the
climate physics and model structural error.) Reductions in
uncertainty also occur for ocean diffusivity and aerosol forc-
ing, although learning about aerosol forcing ceases as the
forcing itself diminishes in the RCP 8.5 scenario.

In general, more rapid learning about climate sensitivity
occurs for lower sensitivities. This occurs because lower sen-
sitivities are also associated with faster response times (hold-
ing vertical diffusivity fixed), as derived in Hansen et al.
[1985]. This can also be seen in Fig. 1, as the warming
projected in the high-sensitivity scenarios are more simi-
lar to each other than in the low-sensitivity scenarios, im-
plying that it is more difficult to learn about high climate
sensitivities than low sensitivities. Also, we might expect
slower learning about unlikely extreme scenarios in the tails
of the present-day probability distribution, such as a very
high climate sensitivity, under the expectation that more
data may be required to contradict our beliefs about sce-
narios we judge to be unlikely than ones we judge to be
likely. However, the low climate sensitivity scenario is also
in the tail of the present-day distribution, and experiences
faster learning rates than the very high scenario.

To explore the robustness of slow learning about high
climate sensitivities with respect to model formulation, we
compare the transient surface warming projected for 2100 as
a function of climate sensitivity across four different models

Figure 4. Historical and future learning over time about
the three estimated climate parameters. Black indicates
historically constrained estimates; the four colors repre-
sent the four future sensitivity scenarios in Fig. 1. The
thick curves are the posterior means, and the shaded
bands are the marginal 95% intervals. The diamonds on
the right are the assumed ‘true’ values in the four future
learning scenarios.
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(Fig. 5): a simple 2-layer EBM from the DICE-2007 inte-
grated assessment model [Nordhaus, 2007] (adapted from
Schneider and Thompson [1981]), the DOECLIM diffusive-
ocean EBM used in this study, and the GENIE model of
intermediate complexity [Holden et al., 2010].

Both the 2-layer EBM and the GENIE model agree quite
closely with the predictions of the DOECLIM model. All
the curves exhibit the feature that high sensitivities have
similar transient responses, leading to slower learning. In
all but the black dashed curve, all parameters but climate
sensitivity are held fixed, which simplifies the analysis but
does not correspond to the methodology of this paper. By
contrast, our analysis allows the other parameters to be cor-
related with climate sensitivity as in Fig. 2, as implied by
historical observational constraints.

To study how observational constraints on non-climate
sensitivity parameters affect the transient temperature re-
sponse, DOECLIM experiments are carried out that allow
the ocean diffusivity and aerosol forcing parameters to co-
vary with climate sensitivity as described in Section 2.3. In
general, this reduces the expected warming (black dashed
curve) compared to holding ocean diffusivity and aerosol
forcing constant at their 2012 posterior mean values. (The
noisy behavior of the curve at high climate sensitivities oc-
curs because there are few posterior samples in 2012 with
high sensitivities from which to compute the mean transient
response.) However, the qualitative feature remains that
high sensitivities are more difficult to distinguish from each
other than are low sensitivities on the basis of the observed
temperature response.

4. Conclusions

Under the assumptions of this study, substantial learn-
ing about climate sensitivity is possible during this century,
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Figure 5. Transient warming (as measured by surface
temperature difference between 1850 and 2100) as a func-
tion of equilibrium climate sensitivity, for a 2-layer en-
ergy balance model (DICE-2007), the diffusive ocean en-
ergy balance model used in this study (DOECLIM), and
an Earth system model of intermediate complexity (GE-
NIE). For DOECLIM, two cases are considered: where
the ocean diffusivity and aerosol forcing are held fixed,
and where they are allowed to covary with climate sensi-
tivity consistent with historical observations.

reducing the 95% interval width to 0.5 ◦ or less. Climate sen-
sitivity scenarios, separated into coarse 1.5◦ intervals from
1.5–6 ◦C can be distinguished from each other with ∼20–
55 additional years of observations, depending on scenario.
The climate sensitivity scenarios scenarios can be statisti-
cally distinguished from the next highest scenario, insofar
as their 95% credible intervals no longer overlap, by 2030 to
2065, depending on scenario.

However, these learning rates are dependent on the as-
sumption that the ocean heat uptake is observable for the
entire ocean. Most data sets typically only give data for
the upper 700 or 2000 meters (e.g., Levitus [2012], with the

Figure 6. Projected temperature and ocean heat, repli-
cating Fig. 1 for RCP 8.5 (left), compared to RCP 2.6
(right).

Figure 7. Parameter learning, replicating Fig. 4 for RCP
8.5, compared to RCP 2.6 (right).
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accuracy of the latter decreasing significantly in years prior
to the last decade. Learning rates should be slower with
more realistic assumptions about the limitations of ocean
heat observations. Learning will also be slower under lower
emissions scenarios than the assumed RCP 8.5, although
the time to distinguish between climate sensitivities is not
greatly reduced, which we hypothesize is due to the large
ocean heat signal-to-noise ratio present across RCP scenar-
ios (Appendix A). This analysis makes strong simplifying
assumptions about climate physics (by using a global EBM)
as well as the nature of the model structural error (by using
an AR(1) process fit to the data-model residuals). These
assumptions could also lead to optimistic uncertainty esti-
mates.

On the other hand, the analysis here uses only a simple
EBM with globally- and annually-averaged surface tempera-
ture and ocean heat constraints. It neglects all spatial infor-
mation [Sansó and Forest , 2009], the seasonal cycle [Knutti
et al., 2006], shortwave and longwave radiation observations
[Huang et al., 2010; Feldman et al., 2011; Huber et al., 2011],
dynamical constraints on feedbacks [Fasullo and Trenberth,
2012], and other observational constraints that could be
brought to bear on the problem. Nor does it analyze feed-
backs at the regional level or decomposes climate sensitivity
into individual component feedback processes (clouds, water
vapor, surface albedo, etc.).

Thus, in the absence of a more sophisticated analysis, the
question of whether the learning rates in this paper are op-
timistic or pessimistic remains open. The present analysis
also neglects uncertainty about the learning rate itself; con-
ditioning on the expected model parameters and only sam-
pling a single projected future for each gives only a noisy
point estimate of the learning time rather than a distribu-
tion of possible learning times; such distributions have been
considered in earlier work, such as Kelly and Kolstad [1999].
Followup work should also revisit the policy implications
found in earlier integrated economic analyses, to determine
how the learning results found here may shift the balance
between immediate vs. deferred mitigation.
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Appendix A: Other learning assumptions

A less strongly forced system will lead to a weaker climate
response, which in principle should result in longer learning
times. To test this hypothesis, we repeat the learning study
using the low RCP 2.6 emissions scenario. The projections,
compared to the RCP 8.5 case in the main text, are shown
in Fig. 6, and the parameter learning in Fig. 7.

Although there are some differences in climate sensitiv-
ity learning rate across the RCP 8.5 and 2.6 scenarios, the
time required to differentiate between different sensitivities
is qualitatively similar under both high and low emissions
projections. We hypothesize this is due to the large signal-
to-noise ratio present in the simulated ocean heat uptake
projections. Intuitively, if we expect that the ocean heat
data provide a strong constraint on climate sensitivity, the
learning time will be roughly determined by the time it takes
for the projected ocean heat curves to no longer overlap with
each other. The projections in the lower panels of Fig. 6 sug-
gest the uptake curves may be discriminated around ∼2050,
consistent with the parameter learning results in Fig. 7.

To highlight the importance of the ocean heat constraint,
Fig. 8 shows learning results that ignore the ocean heat
data, only constraining the parameters with surface tem-
perature. Substantially delayed learning results, with the
3 ◦C scenario separating from higher sensitivities only af-
ter 2100, and the two higher scenarios distinguishable from
each other around 2150. The ocean diffusivity parameter,
as expected, not practically identifiable using only surface
temperature data (little learning occurs).
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